Extension of the Wiener index and Wiener polynomial

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hyper-Wiener Polynomial of Graphs

The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are compu...

متن کامل

Wiener Matrix Sequence, Hyper-Wiener Vector, Wiener Polynomial Sequence and Hyper-Wiener Polynomial of Bi-phenylene

The Wiener matrix and the hyper-Wiener number of a tree (acyclic structure), higher Wiener numbers of a tree that can be represented by a Wiener number sequence W, W,W.... whereW = W is the Wiener index, and R W k K    ,.... 2 , 1 is the hyper-Wiener number. The concepts of the Wiener vector and hyper-Wiener vector of a graph are introduced for the molecular graph of bi-phenylene. Moreover, ...

متن کامل

Generalizations of Wiener Polarity Index and Terminal Wiener Index

In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. We introduce a generalizedWiener polarity indexWk(G) as the number of unordered pairs of vertices {u, v} of G such that the shortest distance d(u, v) between u and v is k. For k = 3, we get standard Wiener polarity index. ...

متن کامل

Relationship between the Hosoya polynomial and the hyper-Wiener index

The Hosoya polynomial of a graph, H(G, z), has the property that its first derivative, evaluated at z = 1, equals the Wiener index, i.e., W(G) = H’(G, 1). In this paper, an equation is presented that gives the hyper-Wiener index, WW(G), in terms of the first and second derivatives of H(G,z). Also defined here is a hyper-Hosoya polynomial, HH(G,r), which has the property WW(G) = HH’(G, l), analo...

متن کامل

Wiener Index and Hosoya Polynomial of Fibonacci and Lucas Cubes

In the language of mathematical chemistry, Fibonacci cubes can be defined as the resonance graphs of fibonacenes. Lucas cubes form a symmetrization of Fibonacci cubes and appear as resonance graphs of cyclic polyphenantrenes. In this paper it is proved that the Wiener index of Fibonacci cubes can be written as the sum of products of four Fibonacci numbers which in turn yields a closed formula f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2008

ISSN: 0893-9659

DOI: 10.1016/j.aml.2007.10.001